Assessment of a geological model by surface wave analyses
نویسندگان
چکیده
A set of horizontal to vertical spectral ratio (HVSR) and multichannel analysis of surface waves (MASW) measurements, carried out in the Altavilla Milicia (Sicily) area, is analyzed to test a geological model of the area. Statistical techniques have been used in different stages of the data analysis, to optimize the reliability of the information extracted from geophysical measurements. In particular, cluster analysis algorithms have been implemented to select the time windows of the microseismic signal to be used for calculating the spectral ratio H/V and to identify sets of spectral ratio peaks likely caused by the same underground structures. Using results of reflection seismic lines, typical values of P-wave and S-wave velocity were estimated for each geological formation present in the area. These were used to narrow down the research space of parameters for the HVSR interpretation. MASW profiles have been carried out close to each HVSR measuring point, provided the parameters of the shallower layers for the HVSR models. MASW inversion has been constrained by extrapolating thicknesses from a known stratigraphic sequence. Preliminary 1D seismic models were obtained by adding deeper layers to models that resulted from MASW inversion. These justify the peaks of the HVSR curves due to layers deeper than MASW investigation depth. Furthermore, much deeper layers were included in the HVSR model, as suggested by geological setting and stratigraphic sequence. This choice was made considering that these latter layers do not generate other HVSR peaks and do not significantly affect the misfit. The starting models have been used to limit the starting research space for a more accurate interpretation, made considering the noise as a superposition of Rayleigh and Love waves. Results allowed to recognize four main seismic layers and to associate them to the main stratigraphic successions. The lateral correlation of seismic velocity models, joined with tectonic evidences, allowed to plot two geological sections, showing the main pattern of geological formations and tectonic structures.
منابع مشابه
Velocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack
Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...
متن کاملNumerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملDiscrimination of Geological Top-Formations by their Morphology through SAR Images and via Fractal Geometry implementation in IEM Backscattering Model(Case Study: Zagros Thrust Belt)
Morphological discrimination of geological top-formations is the supplemental procedure of geological mapping; so in situ measurements to register geomorphological data are unavoidable; though due to the impassable and fault cliffs field operations to visit all areas within a geological map is almost impossible. Microwave or radar remote sensing, via synthetic aperture radar (SAR) images is cap...
متن کاملمدلسازی عددی نوسانات سطح آب و تغییرات فشار منفذی در بدنه موجشکنهای توده سنگی سنتی
When studying the structural response of rubble mound breakwaters to wave loading, the knowledge of water surface fluctuations, pore pressure variations and related wave attenuation inside the porous structure is important since the pore pressures affect most responses, such as wave run-up, wave overtopping, reflections, transmission and the hydraulic and geotechnical stability of the breakwate...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کامل